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Abstract
The recognition of woven fabric pattern is a crucial task for mass manufacturing and quality control in the textile industry. 
Traditional methods based on image processing have some limitations on accuracy and stability. In this paper, an automatic 
method is proposed to jointly realize yarn location and weave pattern recognition. First, a new big fabric dataset is estab-
lished by a portable wireless device. The dataset contains wide kinds of fabrics and detailed fabric structure parameters. 
Then, a novel multi-task and multi-scale convolutional neural network (MTMSnet) is proposed to predict the location maps 
of yarns and floats. By adopting the multi-task structure, the MTMSnet can better learn the related features between yarns 
and floats. Finally, the weave pattern and basic weave repeat are recognized by combining the yarn and float location maps. 
Extensive experimental results on various kinds of fabrics indicate that the proposed method achieves high accuracy and 
quality in weave pattern recognition.

Keywords  Weave pattern recognition · Texture analysis · Computer vision · Multi-task learning · Convolutional neural 
network

Introduction

Woven fabrics are produced by interlacing two perpendicu-
lar sets of yarns: vertically passing warps and horizontally 
passing wefts. The cross states of warps and wefts are called 
floats. There are two types of floats: A warp float refers to 
a float with a warp passing above a weft, and a weft float 
denotes a float with a weft residing on top of a warp. The 
weave pattern is usually composed of the recurrence of the 

basic weave repeat (Schneider et al. 2015). The basic weave 
patterns are the plain, twill, and satin weave. Figure 1 shows 
a 2/2 left twill fabric image sample and its schematic dia-
gram of the basic weave repeat. The weave pattern is an 
important parameter which makes the fabric not only strong 
and stable but also visually aesthetic. Conventional weave 
pattern recognition methods are mainly based on manual 
analysis, which is time-consuming and has high labor costs. 
Therefore, it is desirable to develop a high efficiency and 
robustness method for the automatic recognition of weave 
patterns.

The weave pattern is a relative abstract conception, which 
relies on the analysis of floats and the reasoning of the rela-
tionship between warps and wefts. However, the colors, 
diameters, and overriding relationships of yarns are quite 
diverse. Moreover, the automatic method should have high 
accuracy and generalization faced with various kinds of 
fabrics. All the above reasons make the problem a rather 
challenging task. In our previous work (Meng et al. 2019), 
we creatively explored a multi-scale convolutional neural 
network (MSnet) to measure the fabric density. The method 
adopted a portable device to capture fabric images and estab-
lished a dataset. The MSnet can accurately locate yarns and 
outperforms the state-of-art methods. Despite the excellent 
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performance for fabric density measurement, using it alone 
does not enable to the recognition of the weave pattern.

In this paper, we develop a new multi-task and multi-
scale convolutional neural network (MTMSnet) to learn the 
associativity of yarns and floats. The multi-task structure 
achieves a high performance that cannot be achieved by a 
single task. Figure 2 shows the flow chart of the proposed 
method. Besides, we further expand our fabric image dataset 
and label the information of floats. The establishment of this 
elaborated dataset allows us to train the network well and 
conduct a comprehensive evaluation.

The rest of the paper is organized as follows: First, some 
related works on the fabric weave pattern recognition are 
given in Sect. 2. In Sect. 3, the image acquisition system and 
the dataset establishment are briefly introduced. Section 4 
provides a description of the MTMSnet and the following 
steps to recognize the weave pattern. In Sect. 5, the training 
and evaluation details are described. It is followed by the 
discussion of the model structure and comparisons of dif-
ferent methods in Sect. 6. Final Sect. 7 draws the conclusion 
of this paper.

Related works

With the development of computer vision and image pro-
cessing algorithms, many scholars have committed to using 
image processing methods to automatically recognize the 
weave pattern (Xu 1996; Wang et al. 2010; Guo et al. 2019). 
In general, there are two ways to recognize the weave pat-
tern: one is to classify the fabrics to basic weave patterns, 
which is considered as a classification problem; Another is 
to locate floats and then classify floats to realize weave pat-
tern recognition.

The methods based on classification (Kinoshita et al. 
1989; Li et al. 2013; Jing et al. 2014) extract the entire fabric 

image features and then use classification methods, like sup-
port vector machine (SVM) and probabilistic neural network 
(PNN), to classify the basic weave patterns. Their methods 
can classify the basic woven fabrics but cannot deal with 
unknown weave pattern fabrics which have limitations in 
generalization and varieties adaptability.

At present, the more widely used method is to locate the 
floats and then identify the float type. Due to the periodic 
nature of the weave pattern, some frequency domain meth-
ods (Lachkar et al. 2005; Shen et al. 2010) is adopted to 
locate the floats. However, the power spectrum is often noisy 
and hard to analysis due to the non-uniform distribution 
of yarns. The space domain methods mainly contain grey 
image projection (Wang et al. 2010) and gray line profile 
(Aldemir et al. 2018). Moreover, The Hough transform is 
utilized to detect the skew angle caused by the placement 
(Pan et al. 2010). Their methods can deal with some simple 
solid color fabrics but show low accuracy on complex color 
pattern fabrics.

Once accurately locating the floats, the next step can be 
seen as a binary classification problem. Kang et al. (1999) 
and Huang et al. (2000) utilized the geometrical shape of 
the floats to classify the floats, but the geometrical shapes 
are very similar in some fabrics which caused high misjudg-
ments. Thus, some texture analysis methods are widely used 
to extract the features of floats such as GLCM (Wang et al. 
2010), active grid model (AGM) (Xin et al. 2009), opti-
cal coherence tomography (OCT) (Sabuncu and Ã-zdemir 
2015), and so on. Their methods require a high resolution 
of the fabric images, which causes the fabric image acqui-
sition systems are expensive and inconvenient. After fea-
ture extraction of the floats, the floats are classified by the 
methods like Fuzzy C-means Clustering (FCM) (Wang et al. 
2010; Schneider and Merhof 2015; Xiao et al. 2018), the BP 
neural network (Pan et al. 2011), and the pattern database 
(Pan et al. 2010). The classification methods rely heavily on 

Fig. 1   A 2/2 left twill fabric 
image sample and its schematic 
diagram of the basic weave 
repeat
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Fig. 2   The flow chart of the proposed method
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feature extraction and some float types need the reasoning 
of the neighboring floats to decide, which cannot be easily 
classified by a single float.

In the past few years, owing to the excellent feature 
extraction capability, convolutional neural networks (CNN) 
are widely used to solve pattern recognition problems such 
as object classification (Malaca et al. 2019; Boonsirisum-
pun and Puarungroj 2018) and defect detection(Tabernik 
et al. 2020; Lin et al. 2019). Boonsirisumpun and Puarun-
groj (2018) and Xiao et al. (2018) used CNN to realize the 
automotive fabric pattern and knitted fabrics pattern classi-
fication respectively. They also converted the weave pattern 
recognition to a classification problem. For weave pattern 
recognition, it is more like a multi-task problem that needs to 
locate the floats and classify the float type. Sindagi and Patel 
(2017) designed a multi-task CNN to address crowd count-
ing problems. Zhang et al. (2016) divided facial landmark 
problems into face classification, bounding box regression 
and facial landmark localization. The multi-task structure 
shows better performance when dealing with associative 
problems.

Although many traditional automatic methods based on 
image processing have been made some progress in the rec-
ognition of the weave pattern, they have some limitations 
on the efficiency and adaptability. In actual production, 
the portability and the application range of the acquisition 
equipment are highly required. To solve the problems in 
existing methods, we use a portable device and develop the 
MTMSnet to realize the recognition of the weave pattern.

As far as we know, there are still few studies based on 
CNN to address the weave pattern recognition problem. The 
paper has the following research contributions: (1) the fabric 
images are captured by a portable device, which extends the 
application range; (2) a more elaborated dataset with the 
information of yarns and floats is established; (3) Extensive 
experiments verify that the MTMSnet has high accuracy and 
robustness under various kinds of fabrics.

Image acquisition system and dataset 
establishment

Image acquisition system

A portable wireless device is used to conveniently acquire 
fabric images in sRGB mode with high-resolution. The 
device is equipped with a WIFI module and constant illu-
mination. In each dealing process, it is only necessary to 
ensure that the fabric surface is flat and clean and the device 
is close to the surface of the fabric. The captured image is 
transferred wirelessly to a server and then the weave pat-
tern can be recognized by the proposed method. The spatial 
resolution (PPI) of the image is fixed as 4680 pixel/inch with 
the size: 1280 pixels × 720 pixels.

Dataset establishment

In our initial exploration phase, we collected about 400 kinds 
of fabrics and established a fabric dataset of 600 images 
with only yarns information to measure the fabric density 
(Meng et al. 2019). In this paper, we expanded the dataset 
to 800 images and labeled the float information in addition. 
We only labeled a basic weave repeat to generate the whole 
float location to reduce the workload of labeling. The loca-
tion of the basic weave repeat is randomly selected. If the 
fabric image does not have a periodic basic weave pattern, 
we labeled all floats in the image. Figure 3a shows a labeled 
image.

A combined strategy, which uses the smooth label to 
generate yarn location maps and the hard label to generate 
float location maps, is utilized to generate location maps 
as ground truth to train the model. For yarn location, we 
still use Gaussian distribution as a smooth label strategy to 
generate yarn location maps (Meng et al. 2019). The floats 
will be successfully located once the warps and wefts are 
segmented in the predicted yarn location maps. The next 
step is to classify the float into warp or weft float. Therefore, 
for float classification, we adopt 0 or 1 which is a hard label 
strategy to generate float location maps. Specifically, we 
generate two float location maps: warp float location maps 
and weft float location maps. If a pixel belongs to a float in 

Fig. 3   A labeled image and its generated location maps. a a labeled image, b a warp yarn location map, c a weft yarn location map, d a warp 
float location map, e a weft float location map
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the image, its value is 1 in the corresponding location map. 
As shown in Fig. 3b–e, four location maps are generated 
respectively.

The extended dataset covers a wide range of weave pat-
terns and fabric types such as plain, twill, satin weave and 
some complex patterns. Figure 4 shows the distribution of 
the warps and wefts densities and fabric types. Meanwhile, 
we recorded the largest complete weave pattern in a fab-
ric image and the basic weave pattern as ground truth for 
evaluation.

The proposed method

We improve the MSnet and design a novel multi-task and 
multi-scale convolution neural network (MTMSnet) to 
jointly realize yarn location and float classification. The 
flow chart of the proposed method is shown in Fig. 2. In 
this section, we introduce the structure of the MTMSnet and 
the processing steps based on the predicted location maps 
in detail.

The multi‑task and multi‑scale convolutional neural 
network

Inspired by the success of the CNN for resolving related 
multi-tasks (Sindagi and Patel 2017; Zhang et al. 2016; 
Dai et al. 2016), the recognition task is carried out as two 
related tasks: yarn location and float classification. Fig-
ure 5 illustrates the structure of the proposed MTMSnet. 
Two parallel stages are corresponding to the two tasks, 
with one stage learning warp and weft yarn location maps 
and the other stage generating warp and weft float location 
maps. Each stage contains two components: multi-scale 
feature encoder and location map decoder. The two stages 
share a set of convolutional features of the multi-scale fea-
ture encoder.

The structure of the encoder and decoder makes the 
network can address some general object location prob-
lems such as defect detection, face detection, and crowd 
counting. Owing to the multi-task structure, it is more 
suitable to extract related features like defect features or 
facial landmark.

Fig. 4   The distribution of the 
warps and wefts densities and 
fabric types in the extended 
dataset
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Shared multi‑scale feature encoder

The initial shared multi-scale feature encode*r contains 
four multi-scale modules to extract features of the raw 
input image. As shown in Fig.  6, the structure of the 
multi-scale module has four different sizes of filters which 
ensures the net has a more extensive local receptive field 
to address the problem of diverse yarn diameters and float 
sizes. To reduce the feature dimensions, a 1 × 1 filter is 
added before each filter. The feature maps of each module 
are 16, 32, 64, 32, respectively. Each interior layer has the 
same feature maps for concatenation. ReLU is adopted as 
the activation function after each layer. A 2 × 2 max-pool-
ing layer is applied to eliminate most texture noises and 
retain robust features. The feature maps generated by this 
deep feature extract encoder are shared by the two decod-
ers: yarn and float location map decoder. The presence of 
the shared convolutional features improves the attention 
filed of the net and reduces the number of parameters in 
some ways.

Yarn location map decoder

The feature maps obtained from the shared encoder are pro-
cessed by yarn location map decoder to generate two location 
maps of warps and wefts. Four convolutional layers with the 
filter size of 7 × 7, 5 × 5, 3 × 3, 1 × 1 and the output channel of 
64, 32, 16, 2 are adopted to refine the details of feature maps 
step by step. To ensure the outputs have the same size as the 
input image, three 2 × 2 transposed convolutional layers among 
the four convolutional layers are added. ReLU activation is 
applied in each layer to avoid gradient vanishing. Mean square 
error (MSE) and structural similarity index (SSIM) are used 
as loss function, which has been proved in our previous work 
(Meng et al. 2019). The definitions are as follows:

where N denotes total pixel number of an image, Yi denotes 
the predicted value, the Gi denotes the ground truth.

(1)MSE =
1
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Fig. 5   The structure of the proposed MTMSnet

Fig. 6   The structure of the multi-scale module
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where �Y and �2
Y
 denote the local mean and variance of the 

predicted value, �G and �2
G

 denote the local mean and vari-
ance of the ground truth, �YG denotes local covariance, C1 
and C2 are small constants to avoid division by zero.

where L is the combined loss function, � is a weight to bal-
ance the MSE and SSIM . In this paper, we set � as 0.001 by 
experiments.

Float location map decoder

The structure of float location map decoder has minor dif-
ferences with the yarn location map decoder. Because a hard 
label strategy is adopted to generate float location maps as 
the ground truth, the activation function of the output layer 
is set as Sigmoid and the loss function is set as binary cross 
entropy (BCE), which is defined as follows:

Using Sigmoid as activation function and BCE as loss 
function will accelerate the convergence and reduce the clas-
sification error for the binary classification problem (Golik 
et al. 2013).

Float location and classification

The network takes a fabric image of arbitrary size, and out-
puts two sets of the same size location maps: warp yarn and 
weft yarn location maps, warp float and weft float location 
maps. Figure 7a–f show a fabric image sample and its pre-
dicted location maps. As mentioned in our previous work 
(Meng et al. 2019), some of the predicted yarn location maps 
have a deficiency in the binding of warps and wefts due to 
warps and wefts masked by each other. We cannot easily 
locate the floats by summing the two warps and wefts loca-
tion maps. Therefore, we introduce a new method of float 
location and classification based on the predicted location 
maps.

Skew angle detection

Due to the influence of the color pattern and the yarn tex-
ture, most of the existing methods need to tune parameters 
according to different fabric images and many outliers occur. 

(6)�2
G
=

1
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N∑
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Gi − �G

(7)�YG =
1
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N∑
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�
Yi − �Y

��
Gi − �G

�

(8)L = MSE + �(1 − SSIM)

(9)BCE = −
1

N

N∑
i=1

�
Gi ln Yi +

�
1 − Gi

�
ln(1 − Yi)

�

However, the predicted yarn location maps have similar pat-
tern features, which have already eliminated most of the noises 
and retained the information of the yarn location. Therefore, 
the skew angle of warps and wefts can be accurately detected 
based on the warps and wefts location maps. First, Otsu algo-
rithm (Ohtsu 1979) is applied to convert the yarn location 
maps to binary images and Zhang–Suen thinning algorithm 
(Zhang and Suen 1984) is used to skeletonize the binary 
images for the purpose of saving computation time. Next, 
Hough transform (Duda and Hart 1972) is carried out to detect 
the skew angles of warps ( �j ) and wefts ( �w ) respectively. Fig-
ure 7g, h shows the skeletonized image and the detected skew 
angle. Finally, the predicted warp yarn location map and warp 
float location map are rotated −�j , and the predicted weft yarn 
location map and weft float location map are rotated −�w . The 
image is cropped to retain a rectangle as the region of interest 
(ROI) which removes the incomplete yarn. Figure 7i–k show 
the ROI and the yarn location maps of the ROI. It should be 
noted that all the predicted location maps are rotated around 
the image center and the sizes of the final rotated images are 
the same. In this way, the relative location among the four 
predicted location maps has not been changed. More detailed 
comparisons between using the MTMSnet processing or not 
have been given in Sect. 6.6.

Yarn segmentation

The Image projection is adopted to locate the warp and weft 
yarns. The rotated warps location map is projected in the col-
umn and the rotated wefts location map is projected in the row 
to get the projection curves. To remove noises, a 5 × 1 mini-
mum filter is used to smooth the curve. The final smoothed 
projection curves are shown in Fig. 7l, m The smoothed pro-
jection curves are almost noiseless, so by locating the local 
maxima (Pc) the fabric density (d) can be derived. Meantime, 
the two minima (Pl, Pr) on either side of a local maximum 
(Pc) represent the boundary of the yarn. The boundary box 
(BBOX) of each float can be finally obtained by combining 
the Pl and the Pr of each warp and weft. Figure 7n, o show the 
BBOX of each float in the warp float location map and weft 
float location map.

Float type classification

Once the BBOX of each float is got, the float type can be 
classified by calculating the sum values in the corresponding 
location of the float location maps. The float type is decided 
by follows:

(10)Fp =
Sj

Sj+Sw+C
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where Fp is the probability of the float is a warp float; Sj is 
the sum value within the float BBOX in the warp float loca-
tion map; Sw is the sum value within the float BBOX in weft 
float location map; C is a small constant to avoid division by 
zero; F is the float type; T is a threshold and we set T as 0.5 
in this paper. Figure 7p, q show the heatmap for probabilities 
of each float as a warp float and the schematic diagram of 
the recognized weave pattern.

Basic weave repeat recognition

Due to the number of yarns is relatively small, we calcu-
late the size of basic weave repeat by the Su index which 
is proposed by Pan et al. (2010). The main principle is to 

(11)F =

{
WEFT,Fp < T

WARP,Fp ≥ T

calculate the probabilities of different repeat sizes from 2 
to the number of yarns. Once we get the size of the basic 
weave repeat, the basic weave repeat can be extracted from 
randomly choosing the same size in the whole predicted 
weave pattern. Figure 7r shows the diagram of the deduced 
basic weave pattern.

Experiments

A series of experiments are conducted to evaluate the 
effectiveness of our proposed method. The hardware used 
in this study includes a sever with Intel(R) Core (TM) 
i9-7900x CPU, GTX 1080Ti GPU, and 32 GB RAM mem-
ory. The algorithm is implemented on the framework of 
Keras 2.2.4 with Tensorflow 1.13.0 as the backend.

Fig. 7   Predicted location maps and processing images for the weave 
pattern recognition. a A test fabric image sample, b predicted warps 
location map, c the predicted wefts location map, d the predicted 
warp float location map, e the predicted weft float location map, f the 
mixed image of the weft float location map and the original image 
to show the predicted effect, g the skeletonized image of the warps 
location map, h the skeletonized image of the wefts location map, i 
the rotated original image and its ROI: the red rectangle region. j the 

rotated warps location map of ROI, k the rotated wefts location map 
of ROI, l the smoothed warp projection curve, m the smoothed weft 
projection curve n the rotated warp float location map of ROI and the 
BBOX of floats, o the rotated weft float location map of ROI and the 
BBOX of floats, p the heatmap for probabilities of the float as a warp 
float, q the diagram of the recognized weave pattern, r the diagram of 
the deduced basic weave repeat (Color figure online)
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Training details

Before training the MTMSnet, the dataset is randomly 
divided into three parts: 600 images are used for training, 
100 images for validation, and the remaining 100 images 
for testing. The images in the training set and validation 
set are horizontal flipped, vertical flipped and shifted chan-
nel intensity for data augmentation. The final size of the 
train set and the validation set is 2400 and 400 images 
respectively. All the images are converted to [0, 1] for nor-
malization. The parameters of the network are randomly 
initialized by Glorot uniform initializer (Glorot and Ben-
gio 2010). Adam optimizer (Kingma and Ba 2014) with 
a small initial learning rate of 10−5 is used to train the 
model. At the same time, we monitor the validation loss 
and set patience of 20 epochs to reduce the learning rate. 
After 200 epochs of training, we obtain the final locating 
model.

Evaluation details

To evaluate the accuracy and robustness of the method, 
we calculate the fabric density and still utilize the mean-
absolute-percentage error (MAPE) and the mean-squared-
percentage error (MSPE) respectively for evaluation (Meng 
et al. 2019), which are defined as follows:

where N is the number of test images, Gi is manual measure-
ment value, Yi is automatic measurement value.

For weave pattern recognition, the convention of existing 
works used recognition error (RE) (Guo et al. 2019; Kuo 
et al. 2016) and yarn location error (YLE) (Xin et al. 2009) 
to evaluate the model, which are calculated as follows:

where N is the number of all test images, R is the number of 
correctly recognized images. L is the number of images for 
correctly locating the yarns. Because of the periodical nature 
of the weave pattern, the correctly recognized image means 
the recognized weave pattern is as same as the ground truth 
or the basic weave repeat is a subset of all possible basic 
weave repeats.

(12)MAPE =
1

N

N∑
i=1

�Gi−Yi�
Gi

× 100%

(13)MSPE =

�
1

N

N∑
i=1

�
Gi−Yi

Gi

�2

× 100%

(14)RE =
N−R

N
× 100%

(15)YLE =
N−L

N
× 100%

RE and YLE indicate the accuracy of the recognition 
based on the whole test set, which cannot illustrate the effect 
for every image. Therefore, we calculate the mean accuracy 
(MACC) based on an image, which is defined as follows:

where N is the number of test images, ni is the number of 
floats of the i image, ri is the number of correctly recognized 
floats of the i image. If the model cannot locate all complete 
yarns in an image (i e, the size of predicted weave pattern 
is not same as the ground truth), we ignore the image to 
ensure the number of predicted floats is the same as the size 
of ground truth and use YLE to extra evaluate the model.

Because it is a binary classification problem for each 
float, the confusion matrix is introduced to further evaluate 
the robustness of the method. We plot the receiver operat-
ing characteristic curve (ROC) and calculate the area under 
the curve of ROC (AUC) to visually and comprehensively 
evaluate the model.

Results

Figure 8 shows some representative fabric samples and their 
predicted results. The results illustrate that the method can 
correctly recognize most of the weave patterns but with 
minor errors when deals with complex weave patterns such 
as jacquard fabrics. The estimated RE and YLE of the whole 
test set are 8% and is 6%. On the other hand, the proposed 
method can still realize accuracy fabric density measure-
ment. The estimated MAPE of warps and wefts densities 
in the whole test set are 1.38% and 1.65% respectively, the 
MSPE are 2.28% and 2.43% respectively. All the above 
results approve that the proposed method can jointly realize 
weave pattern recognition and fabric density measurement 
with high accuracy and robustness.

In terms of computation time, the model takes about 
4.62 s to deal with an image in the first loading. But it 
only takes about 0.59 s when we use the hot loading and 
the image of the weave pattern does not output. Moreover, 
because of using a portable device, the fabric density and 
weave pattern can be conveniently obtained within 10 s.

It should be noted that the MTMSnet do not rely heavily 
on the image acquisition device. As long as the yarns and 
floats in the image can be clearly distinguished by humans, 
the MTMSnet can achieve favorable results for the fabric 
density measurement and weave pattern recognition. In prac-
tice, the recommended range of the fabric density is 50 thds/
inch to 250 thds/inch and the PPI of the fabric image is better 
between 3000 and 12000 pixel/inch. The fabric should not 
have large curved or overlapped yarns such as nap fabrics, 
two-layer fabrics and so on.

(16)MACC =
1

N

N∑
i=1

ni−ri

ni
× 100%
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No. Original image Predicted warp 
location

Predicted weft
location

Predicted warp float 
location

Predicted weft float 
location Recognized weave pattern

a 
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c 
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e 
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g 

h 

i 

j 

k 

l 

m 

n 

Fig. 8   Some representative fabric samples and their location maps in test set: the largest complete weave pattern is marked with a red rectangle 
and the misjudged floats are marked in red (Color figure online)
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The model shows errors when deals with some more 
complex fabrics such as jacquard fabrics. Take Fig. 8n as 
an example. The float location and classification results are 
illustrated in Fig. 9. Most of the floats have been success-
fully located and classified but three floats are misjudged. 
Figure 9b, c show that the location of the misjudged floats 
has deviations, which affect the final classification results. 
The reason is that the Hough transform is used to calculate 
the average skew angle, but the skew angle of each yarn 
is not the same and some yarns are curved. In addition to 
these, even humans can hardly tell apart the float type in 
some images.

Discussion

Different loss functions and different strategies 
to transform labels to location maps

To improve the performance of the MTMSnet, differ-
ent loss functions, activation functions, and strategies to 
transform labels to location maps were discussed. We used 
MSE + SSIM as loss function and ReLU as the activation, 
which has been verified in our previous work (Meng et al. 

2019). Moreover, we also tried to use BCE as loss function 
and the Sigmoid as the activation of the output layer of the 
MTMSnet. Meanwhile, we adopted the hard and smooth 
label strategy respectively to generate float location maps 
for the aim of fitting with different loss functions. The 
hard label strategy has been described in Sect. 3.2. For the 
smooth label strategy, we assume that the pixel within the 
float obeys that the float center as the mean value  and a 
scale parameter  as the standard deviation. Therefore, the 
float can be represented as Gaussian kernels. We set  as 
the center of the float and  as 0.1 of the width or height of 
the float by experiments.

For qualitative analysis, Figs. 10a–d and 11a show the 
predicted location maps and the ROC of different loss 
functions and strategies respectively. Table 1 reports the 
results of the evaluation indexes. It can be seen that using 
the hard label to transform original labels to float location 
maps obtains lower error, and BCE is more suitable for 
this strategy. The reason is that using MSE + SSIM as loss 
function can accurately locate yarns, which is beneficial 
to measure fabric density. But for float classification, it is 
considered that using BCE as loss function and the Sig-
moid as the activation is more suitable due to the effects 
of classification rely on the contrast between the two float 
location maps.

Fig. 9   The float location and classification results of Fig. 8n. a The 
original image marked with the ROI and the misjudged floats, b the 
rotated warp float location maps marked with float location and the 

misjudged floats, c the rotated weft float location maps marked with 
float location and the misjudged floats, and d the heatmap for prob-
abilities of each float as a warp float
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Multi‑task structure

To evaluate the effectiveness of the multi-task structure, the 
MTMSnet was split into two deep neural networks which 
can be seen as two slightly different MSnet (Meng et al. 

2019) (the difference is the loss function and the activation 
of the last layer). The training parameters of the MTMSnet 
are 2.1 million and the two divided nets are the same size 
of 1.6 million. We trained and evaluated the three networks 
based on the same dataset. The running of the two divided 
nets is separated due to the limitation of the finite computa-
tional ability of the hardware.

Table 2 reports the evaluation indexes. Figure 11b shows 
the ROC of joint learning (the proposed method) and the sin-
gle learning (the combination of the two divided nets). The 
joint learning of yarn and float location reduces the error 
compared to the single-stage CNN, especially for locating 
yarns. The results for fabric density measurement is even 
better than the MSnet from the comparisons of the MAPE 
and MSPE. The main reason might be that the shared multi-
scale encoder ensures the model can learn more general 

a e

b f 

c g 

d h 

No Original image Predicted warp float 
location map

Predicted weft float 
location map No Original image Predicted weft

location map
Predicted weft float 

location map

Fig. 10   Predicted yarn and float location maps with different loss 
functions, label strategies, and image resolutions: a the smooth 
label and MSE + SSIM as the loss function, b the hard label and 

MSE + SSIM as the loss function, c the smooth label and BCE as the 
loss function, d the hard label and BCE as the loss function, e 3078 
PPI, f 4680 PPI, g 5925 PPI, h 12,312 PPI

Fig. 11   The ROC of different methods for evaluation: a the ROC of different loss functions and strategies to transform labels to location maps, b 
the ROC of different methods, c the ROC of different dataset sizes

Table 1   Evaluation indexes of different loss functions and strategies 
to transform labels to location maps

The boldface values refer to the best values

Loss function Label strategy MACC (%) RE (%) YLE (%)

MSE + SSIM Smooth label 90.16 11 6
MSE + SSIM Hard label 92.88 8 6
BCE Smooth label 89.50 12 6
BCE Hard label 92.97 8 6
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representations, which means the feature maps embedded 
with yarn and float information. Moreover, the cross states 
of warps and wefts are rightly the location of floats, which 
makes complements between the yarn location maps and 
float location maps in certain extent.

Multi‑scale structure

We have explored some modifications of the structure of the 
MTMSnet to further enhance the recognition of the weave 
pattern. We modified the multi-scale module considering the 
diversity of the sizes of floats. In the multi-scale module, we 
added a parallel 1 × 1 and 9 × 9 filter to further extend the 
spatial awareness of the net. At the same time, we used the 
3 × 3 filter to replace all of the filters of different sizes as a 
comparison.

Table 3 reports the evaluation indexes of different mod-
ifications of the multi-scale structure, which can be seen 
that the model obtains more promising results when using 
the multi-scale module. Although the extended multi-scale 
structure achieves higher MACC for weave pattern recogni-
tion, the overall results of the original multi-scale is better. 
The performance of the MTMSnet can be applied to the 
general weave pattern recognition.

Input image resolution

Image resolutions were discussed to evaluate the generali-
zation and the application scope of the MTMSnet. In the 
experiments, we used different image resolutions of the 
same fabric for qualitative analysis. Figure 10e–h show the 
predicted weft yarn and float location maps under different 

PPI. The MTMSnet reveals certain adaptability under dif-
ferent PPI, but too small or large of PPI of the input image 
will result in the deficiency of the predicted location maps, 
which reduces the accuracy. The main reason is that the 
yarns are relatively dense or few beyond the receptive field 
of the net.

Dataset size

Conventionally, training a deep neural network needs the 
dataset large enough. Table 4 and Fig. 11c illustrate the 
evaluation indexes and the ROC with different sizes of the 
train set. The train sets are selected to cover most common 
fabric types but there is not a same image between the train 
set and the test set. Although the error on the test set is 
still high when trained with a small set, the model shows a 
certain ability to locate yarns and classify floats, owing to 
the multiple transposed convolution layers in the decoder 
stage and fabric images have some similar patterns. The 
results also illustrate that the larger the training set, the 
better the performance. So, it is necessary to establish a 
relatively large dataset to improve the robustness of the 

Table 2   Evaluation indexes of 
the joint learning and the single 
learning

The boldface values refer to the best values
The MAPE and MSPE are the mean value of the estimations of warps and wefts densities

Structure MAPE (%) MSPE (%) MACC (%) RE (%) YLE (%) Process-
ing time 
(s)

Single 1.56 2.60 91.84 8 7 6.23
Joint 1.52 2.36 92.97 8 6 4.62

Table 3   Evaluation indexes of 
different modifications of the 
structure

The boldface values refer to the best values

Structure MAPE (%) MSPE (%) MACC (%) RE (%) YLE (%) Param-
eters 
(million)

3 × 3 filter 1.96 2.72 90.53 12 8 2.00
9 multi-scale 1.61 2.363 93.54 8 6 3.39
MTMSnet 1.52 2.355 92.97 8 6 2.11

Table 4   Evaluation indexes of the MTMSnet trained with different 
dataset sizes

The boldface values refer to the best values

Dataset 
size

MAPE (%) MSPE (%) MACC 
(%)

RE (%) YLE (%)

20 12.34 18.43 81.73 28 20
100 5.80 9.51 84.50 22 14
300 3.68 4.70 89.11 14 9
600 1.52 2.36 92.97 8 6
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model. Part of the dataset will be on publication to encour-
age the study of this problem.

Comparisons with different methods

We made comparisons between existing weave pattern 
recognition methods and the proposed method to further 
demonstrate the performance. Some methods have not been 
realized due to the requirement of the image acquisition sys-
tem such as transmitting images (Li et al. 2019), dual-side 
captured images (Xin et al. 2009). In this paper, we realized 
the image projection to locate floats and the FCM to clas-
sify the float types which is widely used in the weave pat-
tern recognition (Wang et al. 2010; Schneider and Merhof 
2015; Xiao et al. 2018). The detailed steps can be seen in 
Table 5. Meantime, we used the MSnet to locate floats and 
the FCM to classify float types. Some parameters are set 
according to their study and our experiments to ensure a 
fair comparison. In the experiment, some fabrics are failed 
to be recognized and many outliers occurred in the test set, 
the reasons are that our dataset is more complex and the 
fine textures in the image are not clear enough. Figure 11b 
shows the ROC of different methods. The evaluation indexes 
and parameter settings can be observed in Table 5. The pro-
posed method reaches higher accuracy compared with other 
methods. Moreover, using the MSnet to predict the location 
maps can highly improve the accuracy of the FCM to clas-
sify the floats.

Conclusion

Aiming at the recognition of the weave patterns of various 
kinds of fabrics, a novel MTMSnet is presented in this paper. 
The multi-task structure improves the ability to extract fea-
tures from related tasks. The multi-scale structure enhances 
the adaptability of the network, which ensures a more exten-
sive local receptive field to deal with different sizes of the 

interesting objects. Extensive experiments prove that: (1) 
the proposed method can jointly realize yarn location and 
weave pattern recognition with high accuracy, (2) the pro-
posed method shows a better adaptability under a wide range 
of fabric densities and weave patterns, and (3) the potable 
image acquisition device makes it efficient and convenient 
for the recognition of the weave pattern.

Although the proposed method reaches high performance, 
it still has some limitations: (1) the establishment of the 
dataset is time-consuming, (2) the method cannot deal well 
with fabrics which contain large curved or overlapped yarns. 
In the future, the detailed directions of our research are as 
follows: (1) the further enhancement of the structure of the 
MTMSnet and new end-to-end methods will be discussed 
for the better recognition of the woven fabric pattern, (2) 
some new unsupervised models will be researched, (3) the 
automatic analysis of some other fabric structure parameters 
will be studied such as the layout of color yarns in yarn-dyed 
fabrics, and (4) an online web service will be established for 
automatic detection of fabric structure parameters.
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